Анализ переходных процесов Метод свертывания Синтез активных полосовых фильтров
ТОЭ Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop Электротехника Атомная физика Графический пакет OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Главную Использование программы Mathcad Расчет разветвленной электрической цепи метод контурных токов метод узловых потенциалов метод наложения

Лабораторные работы по электротехнике (ТОЭ)

Метод контурных токов.

При использовании метода контурных токов расчет сложной разветвленной схемы проводят в два этапа.

 На первом этапе вводят и рассчитывают вспомогательные контурные токи, число которых NК обычно меньше общего числа NВ неизвестных токов. На втором этапе путем простого алгебраического суммирования находят искомые токи.

Для решения нашей задачи зададимся направлениями контурных токов Ja, Jb, Jc и Jd в замкнутых контурах A, B, C и D соответственно (на пример, как это показано на рис. 2, пунктирными линиями против часовой стрелке). По любой ветви должен протекать хотя бы один контурный ток.

Высшие гармоники в трехфазных цепях Рассмотрим процесс поведения высших гармоник в трехфазных системах. При этом будем полагать, что фазные напряжения источника не содержат постоянных составляющих и четных гармоник, т.е. кривые напряжения симметричны относительно оси абсцисс, которые на практике встречаются наиболее часто.

Для расчета контурных токов составим систему из NК уравнений на основе второго закона Кирхгофа:

для контура A Ja (r1+R1) – Jb R1= E1

для контура B Jb (R1+R2+ R3+r3) – Ja R1– Jc r3 – Jd R3= E3

для контура C Jc (r3+RH+R5) – Jb r3 – Jd R5= – E3

для контура D Jd (r2+R3+R4+R5) – Jc R5 – Jb R3 = E2

Действительные токи в ветвях определяются наложением контурных токов. Для определения истинных значений токов, протекающих в схеме, запишем соотношения, связывающие их с контурными токами:

J0 = Jd – Jb ; J1 = Ja ; J2 = Jb ; 

 J3 = Jb– Ja ; J4 = Jc ; (5)

 J5 = Jc – Jb ; J6 = Jd – Jc ; J7 = Jd 

Если какое-нибудь значение тока получится отрицательным, то его направление противоположно тому, что указано в схеме.

Правильность расчета значений токов в схеме, как и в предыдущем случае, проверяется путем проверки выполнения баланса мощностей (4).

Для расчета падений напряжения на элементах электрической цепи следует воспользоваться законом Ома (1).

Решение задачи методом контурных токов с помощью программы MathCAD приведено на листинге №2.

Второй закон Кирхгофа определяет, что изменение потенциала во всех элементах контура в сумме равно нулю. Это значит, что при обходе контура abcda электрической цепи, в силу того, что потенциал точки а один и тот же, общее изменение потенциала в контуре равно нулю. Из этого следует, что алгебраическая сумма э. д. с. в любом контуре электрической цепи постоянного тока равна алгебраической сумме падений напряжений на всех элементах, входящих в этот контур
Курсовая и лабораторная работа по теории электрических цепей