ТОЭ Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop Электротехника Атомная физика Графический пакет OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Главную

Курс лекций по физике раздел Оптика

Уравнение Эйнштейна для внешнего фотоэффекта. Экспериментальное подтверждение квантовых свойств света

А. Эйнштейн в 1905 г. показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой v не только испускается, как это предполагал Планк (см. § Формулы Рэлея – Джинса и Планка), но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых ε0=hv. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода A из металла (см. § Работа выхода электронов из металла) и на сообщение вылетевшему фотоэлектрону кинетической энергии . По закону сохранения энергии,

 (14.2)

 

 Уравнение (14.2) называется уравнением Эйнштейна дня внешнего фотоэффекта.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (14.2) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни A, ни v от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А = const), то при некоторой достаточно малой частоте v=v0 кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (14.2) получим, что

 (14.3)

 и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т. е. от химической природы вещества и состояния его поверхности.

Выражение (14.2) можно записать, используя (14.1) и (14.3), в виде

.

Силы тяготения. Закон всемирного тяготения. Гравитационное поле и его напряженность. Потенциальные силовые поля. Космические скорости. Кинематика поступательного и вра-щательного движения. Мгновенные скорости и ускорения. Элементы механики
сплошных сред Газ и жидкость как сплошная среда. Аэрогидродинамика и статика. Законы Паскаля и Архимеда. Уравнение Бернулли.

туфли Кемел Актив купить, купить active- значит обеспечить себе неотразимый.