ТОЭ Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop Электротехника Атомная физика Графический пакет OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Главную

Дифференциальное исчисление функций многих переменных Курс лекций

Пример метрического простраства и последовательности замкнутых вложенных шаров в нем без общей точки

. Это полное метрическое пространство. Проверка первых двух свойств не составляет труда, а для третьего, имеем:  .

.

Лемма 1

Если в нормированном пространстве .

Доказательство

.

.

.

.

x=y; если  z, ||z||0, то рассмотрим .

Геометрическое изображение комплексного числа z = x + iy. Выберем декартову прямоугольную систему координат. По оси абцисс отложим вещественную часть числа х, по оси ординат отложим мнимую часть числа у, получим на плоскости точку z с координатами ( х,у ) Ось ох называется вещественной осью Ось оу называется мнимой осью. Вся плоскость хоу называется плоскостью комплексного переменного.