ТОЭ Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop Электротехника Атомная физика Графический пакет OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Главную

Дифференциальное исчисление функций многих переменных Курс лекций

Теорема

1) Если в нормированном пространстве  .

2) Если в нормированном пространстве  .

Доказательство

1*) .

2*) . Частные производные функции нескольких переменных Частные производные первого порядка Пусть функция двух переменных z = f(x, у) определена в некоторой окрестности точки М(x, у) евклидова пространства Е2. Частная производная функции z = f(x, у) по аргументу x является обыкновенной производной функции одной переменной х при фиксированном значении переменной у и обозначается как

Определение 7

Последовательность an точек метрического простраства – последовательность Коши, если .

 

Теорема 10

Если последовательность сходится, то это последовательность Коши.

Доказательство

Если  .

Определение 8

Метрическое пространство – полное, если в нем  последовательность Коши сходится.

Нормированное пространство – банаховое, если это полное метрическое пространство.

Геометрическое изображение комплексного числа z = x + iy. Выберем декартову прямоугольную систему координат. По оси абцисс отложим вещественную часть числа х, по оси ординат отложим мнимую часть числа у, получим на плоскости точку z с координатами ( х,у ) Ось ох называется вещественной осью Ось оу называется мнимой осью. Вся плоскость хоу называется плоскостью комплексного переменного.