Сопромат Основные виды деформаций Расчеты на прочность и жесткость при растяжении-сжатии Кручение стержней круглого сечения Сложное сопротивление. Изгиб с кручением Алгоритм решения задач статики Пример выполнения курсового задания

Сопромат, механика примеры решения задач

Аналитический способ сложения сил

Проекция равнодействующей сходящейся системы сил на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

Пусть на тело действует система сил (F1,…, F4), при этом линии действия сил расположены в плоскости OXY (рис. 1.30).

Подпись:  

Рис. 1.30

Их равнодействующая R = F1 + … + F4. Спроецируем составляющие векторы и их равнодействующую на ось OX. Очевидно F1OX > 0, F2OX > 0, F3OX > 0, F4OX < 0, ROX > 0.

Из рис. 1.30 видно, что ROX = F1OX + F2OX + F3OX + F4OX. Для любой сходящейся системы сил (F1,…, Fn), обозначая их равнодействующую через R, получим:

ROX = Σ FiOX;

ROY = Σ FiOY;

ROZ = Σ FiOZ.

Зная проекции ROX, ROY, ROZ равнодействующей R на координатные оси, можно найти её модуль и направляющие косинусы.

  = ;

cos(R, i) = ROX/R; cos(R, j) = ROY/R; cos(R, k) = ROZ/R.

Для плоской сходящейся системы сил последние выражения приобретают вид:

ROX = Σ FiОX; ROY = Σ FiОY;

  = ;

cos(R, i) = ROX/R; cos(R, j) = ROY/R.

Известно, что сходящаяся система сил уравновешивается только в том случае, если их равнодействующая равна нулю. Графически плоская сходящаяся система сил изображается замкнутым силовым многоугольником (рис. 1.31).

Подпись:  

Рис. 1.31

В общем случае

R = Σ Fi = 0.

В замкнутом силовом многоугольнике все силы направлены в одну сторону по обходу многоугольника.

Частный случай. Три сходящиеся силы уравновешиваются, если треугольник этих сил замкнут.

Подпись:  
Рис. 1.32
Линии действия трёх непараллельных, взаимно уравновешивающихся сил, лежащих в одной плоскости, пересекаются в одной точке (рис. 1.32).

Геометрическое условие равновесия сходящейся системы сил, расположенных в пространстве и на плоскости, одно и то же. Однако графический метод решения задач на равновесие сходящейся системы сил практически применяется только для плоской системы сходящихся сил.

1.6. Аналитические условия равновесия

системы сходящихся сил

В случае если силы взаимно уравновешиваются, их равнодействующая равна нулю. Аналитически это выражается соответствующими уравнениями равновесия.

Для пространственной системы сходящихся сил уравнения равновесия имеют вид:

Σ FiOX = 0; Σ FiOY = 0; Σ FiOZ = 0.

Для плоской сходящейся системы сил уравнения равновесия приводятся к виду:

Σ FiOX = 0; Σ FiOY = 0.

Для равновесия системы сходящихся сил необходимо и достаточно, чтобы суммы проекций этих сил на каждую из координатных осей системы отсчёта равнялись нулю.

При помощи этих уравнений можно решить задачи на равновесие сходящейся системы сил на плоскости и в пространстве.

В основу каждого раздела механики положен ряд понятий и определений, принята система аксиом, т. е. важнейших положений, многократно подтверждённых практикой. Приступая к изучению статики, следует определить основные понятия, встречающиеся в этом разделе механики.

Аксиомы статики Аксиома инерции.

Связи и реакции связей Несвободное тело – тело, на перемещения которого в пространстве наложены ограничения.

Проекции силы на ось и плоскость


Введение в кинематику примеры решения задач