Электротехника - Метод контурных токов

ТОЭ Компьютерный монтаж Основы Flash Corel DRAW Учебник по схемотехнике Законы Кирхгофа P-CAD Autodesk Mechanical Desktop Электротехника Атомная физика Графический пакет OrCAD Теория множеств Оптическая физика Дифференциалы Интегралы Магнитные свойства Зонная теория Квантовая статистика Квантовая физика Магнитное поле Электростатика Геометрическая оптика Основы теории относительности Волновая функция Главную

 

Для расчета режима сложной электрической цепи можно ограничиться совместным решением лишь к=(в—у+1) независимых уравнений, составленных на основании второго закона Кирхгофа методом контурных токов; здесь в, как и ранее, — число ветвей и у — число узлов, при этом первый закон Кирхгофа, конечно, всегда удовлетворяется.

Для иллюстрации применения метода контурных токов рассмотрим схему на рис. 4.21,а с шестью ветвями и четырьмя узлами. Прежде чем составлять уравнения по второму закону Кирхгофа, надо выбрать взаимно независимые контуры.

При выборе независимых контуров можно применять то же правило, что и при записи уравнений по второму закону Кирхгофа. Например, для схемы рис. 4.21, а ветви с токами I4, I5 и I6, соединяющие узлы 1, 2, 3, 4, можно выбрать в качестве ветвей дерева (рис. 4.21,6); поэтому ветви с токами I1, I2 и I3 будут ветвями связи. На рис. 4.21,6 элементы ветвей дерева изображены сплошными линиями, а элементы ветвей связи — штриховыми. Трансформатор с ферромагнитным сердечником При анализе индуктивно связанных цепей была рассмотрена теория воздушного (линейного) трансформатора, т.е. трансформатора без ферромагнитного сердечника. Ферромагнитный сердечник позволяет резко увеличить магнитный поток, что, в свою очередь, приводит к увеличению мощности, передаваемой из одной обмотки в другую, но при этом трансформатор становится нелинейным и возникают дополнительные потери в сердечнике.

 

 

Для схем на рис. 4.21, а и б по первому закону Кирхгофа

 

I1-I4-I3=0,  I5+I2-I1=0, I6+I3-I2 =0. (4.41)

 

На основании второго закона Кирхгофа для трех контуров, каждый из которых включает только одну ветвь связи,

 

. (4.42)

 

Пользуясь уравнениями (4.41), исключим из уравнений (4.42) токи I4, I5 и I6 всех ветвей дерева, общих для нескольких контуров; в результате получим

 (4.43)

 

В соответствии с уравнениями (4.43) можно принять, что каждый из токов I1, I2 и I3 замыкается через соответствующую ветвь связи в одном из контуров (рис. 4.21, а и б), и назвать такие токи контурными: I1К=I1; I2К=I2; I3К=I3. Напряжения на резистивных элементах любого контура равны алгебраической сумме напряжений, обусловленных токами своего и смежных контуров. Например, в контуре из элементов r1 r5 и r4 разность ЭДС Е1—Е4 равняется сумме трех напряжений: от собственного контурного тока I1К на всех сопротивлениях этого контура и от токов I2К и I3К соответственно на сопротивлениях r5 и r4. Токи в ветвях дерева, общих для нескольких контуров, равны алгебраическим суммам контурных токов:

 

I4=I1К-I3К,  I5=I1К-I2К, I6=I2К-I3К. (4.44)

 

Для этой же схемы можно получить и другие взаимно независимые уравнения. Например, выберем другое дерево из первой, пятой и шестой ветвей (рис. 4.21, в), так что вторая, третья и четвертая ветви будут ветвями связи, токи в которых совпадают с контурными. Применив в этом случае второй закон Кирхгофа для контуров 2-3-4-2, 3-1-2-4-3 и 2-4-1-2, получим уравнения с контурными токами I2К, I3К и I4К замыкающимися через ветви деревьев по ветвям связи. Токи в ветвях дерева однозначно определяются через токи ветвей связи (совпадающие с контурными) по формулам

 

I1=I3К+I4К,  I5=I3К+I4К-I2К, I6=I2К-I3К.

 

Выражение для тока I5 получено по первому закону Кирхгофа для токов в ветвях, примененному к главному сечению S5, след которого показан на рис. 4.21, в штриховой линией.

Таким образом, система взаимно независимых уравнений определяется структурой выбранного дерева и соответствующими ветвями связи.

Схема рис. 4.21, а имеет 16 деревьев, поэтому для такой схемы можно написать 16 систем независимых уравнений, каждая из которых содержит в качестве неизвестных три тока, замыкающихся по ветвям связи через ветви выбранного дерева.

Из приведенных примеров следует, что для определения токов в ветвях этим методом нужно ввести в расчет контурные токи и решить совместно систему уравнений, составленных по второму закону Кирхгофа; число этих уравнений меньше числа неизвестных токов ветвей В на число узлов схемы без одного (у—1). При замене токов в ветвях контурными токами первый закон Кирхгофа удовлетворяется для каждого узла, так как каждый контурный ток в одной из ветвей контура направлен к узлу, а в другой — от того же узла. Например, для узла 4 (рис. 4.21, а) по первому закону Кирхгофа для токов ветвей получим: I4—I5—I6=0, или для контурных токов (I1К-I3К)-(I1К-I2К)-(I2К-I3К)=0.

Если схема содержит не только источники ЭДС, но и источники тока, то можно принять ток каждого из источников тока замыкающимся по любым ветвям дерева, составляющим с ветвью источника тока — ветвью связи — замкнутый контур. Падение напряжения, вызванное током такого источника на каждом из сопротивлений контура, учитывается при записи левой части уравнений по второму закону Кирхгофа. Эти напряжения можно также учесть с обратным знаком в правой части уравнений.

 

 

В качестве примера рассмотрим схему на рис. 4.17. На основании второго закона Кирхгофа

 

. (4.45)

 

Пользуясь первым законом Кирхгофа, исключим из этих уравнений токи I4, I5 и I6; в результате после группировки слагаемых получим

 

. (4.46)

 

Из этих уравнений следует, что в рассматриваемом случае ток J как бы замыкается по ветвям с сопротивлениями r5 и r4, дополняющими ветвь с источником тока J до замкнутого контура.

При расчете электрических цепей изложенным методом всегда стремятся к тому, чтобы число контурных токов, замыкающихся через каждую из ветвей, было по возможности минимальным. С этой целью обычно выбирают каждый контур в виде ячейки (на рис. 4.21, а три ячейки с контурными токами I1К, I2К и I3К), руководствуясь указанным выше правилом выбора независимых контуров (дерева и ветвей связи) при составлении уравнений на основании второго закона Кирхгофа, что возможно для любой планарной схемы.

Положительные направления контурных токов можно выбирать и произвольно, т. е. независимо от положительных направлений токов в ветвях.

Установим теперь более общие, необходимые для дальнейших выводов соотношения между контурными токами, сопротивлениями и ЭДС цепи произвольной конфигурации.

Для схемы, имеющей к независимых контуров, уравнения, аналогичные (4.43), запишутся в виде

 

 (4.48)

 

В этих уравнениях сопротивление вида rll (с двумя одинаковыми индексами) называется собственным сопротивлением контура l, а сопротивление вида rlk=rkl (с двумя различными индексами) — общим сопротивлением контуров l и k. Правые части уравнений (4.48) называются контурными ЭДС. Каждая из контурных ЭДС вида Е, равна алгебраической сумме ЭДС всех источников в ветвях контура l. Положительные знаки в каждом уравнении (4.48) должны быть взяты для токов и ЭДС, положительные направления которых совпадают с произвольно выбранным направлением обхода соответствующего контура.

В более общем случае для электрической цепи, которая содержит как источники ЭДС, так и источники тока, контурное уравнение для l-го контура записывается в виде

 

 (4.48а)

 

где  обозначает собственное сопротивление контура l; rlj — общее сопротивление двух контуров: l и j; Jlj — ток источника тока, замыкающийся по ветви с сопротивлением rlj;  — контурная ЭДС (алгебраическая сумма ЭДС в контуре).

Методом узловых потенциалов целесообразно пользоваться, если число узлов схемы, уменьшенное на единицу, меньше числа независимых контуров у—1<к, а методом контурных токов — при у-1>к.

Нелинейные цепи Нелинейными называются цепи, в состав которых входит хотя бы один нелинейный элемент. Нелинейными называются элементы, параметры которых зависят от величины и (или) направления связанных с этими элементами переменных (напряжения, тока, магнитного потока, заряда, температуры, светового потока и др.). Нелинейные элементы описываются нелинейными характеристиками, которые не имеют строгого аналитического выражения, определяются экспериментально и задаются таблично или графиками. Нелинейные элементы можно разделить на двух – и многополюсные. Последние содержат три (различные полупроводниковые и электронные триоды) и более (магнитные усилители, многообмоточные трансформаторы, тетроды, пентоды и др.) полюсов, с помощью которых они подсоединяются к электрической цепи.